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Abstract
We obtain the Robertson–Schrödinger uncertainty relation for shape-invariant
systems and construct generalized Robertson intelligent states for these systems
using an algebraic approach based on the supersymmetric quantum mechanics.
Using the variances of generalized quadrature operators we study the coherency
and squeezing properties, evaluating their dependence on different kinds of
generalizations for shape-invariant systems with potential parameters related by
a translation (Pöschl–Teller potential) and by a scaling (self-similar potential).

PACS numbers: 03.65.Ca, 03.65.Fd

1. Introduction

Coherent states, known as the closest states to classical ones, were introduced by Schrödinger
[1] in the early days of quantum mechanics. Based on the Heisenberg–Weyl group and
applied specifically to the harmonic oscillator system, the original coherent state introduced
by Schrödinger has been extended to a large number of Lie groups with square integrable
representations [2, 3] and was applied to many fields of quantum theory such as quantum
optics, solid state physics, astrophysics and cosmology [4–6]. The extension of coherent
states for systems other than harmonic oscillator has attracted much attention for the past
several years [7–13].

In quantum mechanics, coherent states can be defined in three different ways: (i) as
eigenstates with complex eigenvalues of an annihilation group operator; (ii) as orbits of
the ground state under the action of a unitary displacement operator and (iii) as states
which minimize the Heisenberg uncertainty relation for canonical observables with equal
uncertainties. These three different definitions are equivalent only in the special case of the
dynamical symmetry group of the harmonic oscillator and satisfy the properties necessary for
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a close connection between classical and quantum formulations of a given system. Clearly,
the uncertainty principle limits the precise knowledge of all physical quantities of a quantum
system. In this sense, the coherent states which minimize the uncertainty product are of
particular interest since they describe the quantum system as precisely as possible. In the
construction of coherent states for systems other than harmonic oscillator it has been observed
[14–16] that a more accurate uncertainty relation than the Heisenberg relation, known as
Schrödinger–Robertson uncertainty inequality [17], may be used. When the two Hermitian
operators entering in the Heisenberg uncertainty relation are noncanonical operators the result
could be redundant, while the Schrödinger–Robertson uncertainty relation is not. This fact
makes the Heisenberg uncertainty relation a particular case of the Schrödinger–Robertson
one. The states which minimize the Schrödinger–Robertson uncertainty relation are called
correlated states or Robertson intelligent states [14–16].

In supersymmetric quantum mechanics, usually studied in the context of one-dimensional
systems [18], the partner Hamiltonians Ĥ− and Ĥ+, given in the {|x〉} representation by
expressions

Ĥ− = − h̄2

2M

d2

dx2
+ V (−)(x) = h̄�Â†Â and Ĥ+ = − h̄2

2M

d2

dx2
+ V (+)(x) = h̄�ÂÂ†,

(1)

are most readily written in terms of one-dimensional operators

Â ≡ 1√
h̄�

{
W(x) +

i√
2M

p̂x

}
and Â† ≡ 1√

h̄�

{
W(x) − i√

2M
p̂x

}
(2)

where h̄� is a constant energy scale factor, introduced to permit working with dimensionless
quantities, and the superpotential W(x) is related to the partner potentials V (±)(x) via

V (±)(x) = W 2(x) ± h̄√
2M

dW(x)

dx
. (3)

In this paper, we use a hat to denote only the operators in the physical Hilbert space. On
the other hand, note that in the {|x〉} representation f (x̂) ≡ f (x) for any function f and
p̂x ≡ −ih̄∂/∂x. A number of such pairs of Hamiltonians Ĥ± share the integrability condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1), (4)

called shape invariance [19], where the parameter a2 of the Hamiltonian is a function of its
parameter a1 and the remainder R(a1) is independent of the dynamical variables. In the
cases studied so far the parameters a1 and a2 are either related by a translation [3, 4] or
a scaling [5, 7–10]. Although not all exactly solvable problems are shape-invariant [20],
supersymmetric quantum mechanics together with the shape invariance concept, especially in
its algebraic formulation [21, 22], is a powerful technique to study exactly solvable systems.

In earlier works, by using an algebraic approach, we introduced coherent states for
self-similar potentials [11], a class of shape-invariant systems, and presented a possible
generalization of these coherent states and their relation with the Ramanujan’s integrals [12].
After that we extended this generalized formalism to all shape-invariant systems [23] and
showed that the generalized coherent states then obtained satisfy the essential requirements
necessary to provide the basic principles [24] embodied in Schrödinger’s original idea. The
purpose of this paper is to further extend the classes of Robertson intelligent states for
supersymmetric and shape-invariant quantum system using an algebraic approach. The outline
of the paper is the following. In section 2, we briefly recall the algebraic formulation to shape
invariance and introduce the fundamental principles to construct our generalized intelligent
states. In section 3, we study the coherency and squeezing properties of these states. In
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sections 4 and 5, we apply our general formalism for shape-invariant systems with potential
parameters related for a translation and for a scaling relation, respectively. Finally, brief
remarks close the paper in section 6.

2. Generalized Robertson intelligent states for shape-invariant systems

2.1. Algebraic formulation to shape-invariance

Introducing the parameter translation operator [21] T which acts in the an-potential parameters
space Ea ≡ {|an〉; n = 1, 2, 3, . . .} and the similarity transformation T O(a1)T

† = O(a2) that
replaces a1 with a2 in a given operator or function O, then we can define the operators
B̂+ = Â†(a1)T and B̂− = B̂

†
+ = T †Â(a1) and we can write the Hamiltonians of equation (1)

with the forms Ĥ− = h̄�Ĥ− and Ĥ+ = h̄�T Ĥ+T
†, where Ĥ± = B̂∓B̂±. As a consequence

of these definitions [21], the shape-invariant condition (4) can be written as the commutation
relation [B̂−, B̂+] = T †R(a1)T ≡ R(a0), where we used the identity R(an) = T R(an−1)T

†,
valid for any n ∈ Z. This commutation relation suggests that B̂− and B̂+ are the appropriate
creation and annihilation operators for the spectra of the shape-invariant potential systems
provided that their non-commutativity with R(a1) is taken into account. Indeed, using relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1) (5)

which readily follow from the definitions of B̂±, one gets the commutation relations

[B̂+, R(a0)] = {R(a1) − R(a0)}B̂+ (6)

[B̂+, {R(a1) − R(a0)}B̂+] = {R(a2) + R(a0)}B̂2
+, (7)

and so on. These infinite commutation relations and their complex conjugates together with
the commutator [B̂−, B̂+] = R(a0) form an infinite-dimensional Lie algebra [21].

The ground state of the Hamiltonian Ĥ− satisfies the condition Â|�0〉 = 0 = B̂−|�0〉.
Using this fact and relations (5) it is possible to show that the nth excited eigenstate of that
Hamiltonian

Ĥ−|�n〉 = en|�n〉 and Ĥ+|�n〉 = {en + R(a0)}|�n〉 (8)

has the related eigenvalues en given by e0 = 0 and

en =
n∑

k=1

R(ak), for n � 1. (9)

Also, it is possible to show [25] that the action of the ladder operators B̂± on the eigenstate
|�n〉 is

B̂+|�n〉 = √
en+1|�n+1〉 and B̂−|�n〉 =

√
en−1 + R(a0)|�n−1〉. (10)

2.2. Generalized quadrature operators

From the ladder operators B̂± we introduce two generalized quadrature operators X̂k =
1√
2
(αkB̂+ + B̂−βk) and P̂k = i√

2
(αkB̂+ − B̂−βk) which are supposed to satisfy the generalized

canonical commutation relation [X̂k, P̂k] = iCkÎ . Here, the shorthand notation �k ≡
�(a1, a2, a3, . . .), valid for �k = αk, βk or Ck , stand for arbitrary functionals of the potential
parameters, introduced to establish a more general approach. In these conditions, if we take
into account the definition of the T operator, we observe that

T αkT
† = T α(a1, a2, a3, . . .)T

†

= α(a2, a3, a4, . . .) ≡ αk+1 (11)
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and the same property is valid for the other functionals βk and Ck . It is trivial to verify that the
Hermitian operator properties X̂k = X̂

†
k and P̂k = P̂

†
k impose the conditions B̂−α∗

k = B̂−βk

and β∗
k B̂+ = αkB̂+, common solution of which requires to have βk = α∗

k . Therefore, if we
take into account the properties (5) we can write

X̂k = 1√
2

[αkB̂+ + B̂−α∗
k ] = 1√

2
[αkB̂+ + α∗

k−1B̂−],

P̂k = i√
2

[αkB̂+ − B̂−α∗
k ] = i√

2
[αkB̂+ − α∗

k−1B̂−]
(12)

where α∗
k−1 = T †α∗

kT . The commutator of these operators gives [X̂k, P̂k] =
i(α∗

k−1αk−1B̂−B̂+ − αkα
∗
k B̂+B̂−), and to impose the canonical commutation between them

we must assume that the additional condition

α∗
k−1αk−1 = αkα

∗
k (13)

is satisfied. Taking into account this condition and the commutation relation between the
operators B̂± we obtain

[X̂k, P̂k] = iαkα
∗
kR(a0)Î = iCkÎ . (14)

Consequently, the generalized Hamiltonian Ĥk = 1
2

(
X̂2

k + P̂ 2
k

)
associated with the quadrature

operators has the form

Ĥk = αkα
∗
k

{
Ĥ− + 1

2R(a0)Î
}
, (15)

which differs from the Hamiltonian Ĥ− only in the shift term 1
2R(a0) and in a constant scale

factor, since the canonical relation condition (13) implies that the term αkα
∗
k must be a constant,

independent of the potential parameters an.

2.3. Robertson–Schrödinger uncertainty relation

Consider the state

|�〉 = (X̂k − 〈X̂k〉)|�〉 + i(P̂k − 〈P̂k〉)|�〉λ (16)

where λ ≡ λ(a1, a2, a3, . . .) is a complex function of the potential parameters and the notation
〈Ô〉 = 〈�|Ô|�〉 stands for the expectation value of a given observable Ô in the state |�〉 of
the quantum system. Since for all λ we must have 〈�|�〉 � 0, then with the definition (16)
we obtain the relation

〈�|(X̂k − 〈X̂k〉)2|�〉 + λ∗〈�|(P̂k − 〈P̂k〉)2|�〉λ + i{〈�|(X̂k − 〈X̂k〉)(P̂k − 〈P̂k〉)|�〉λ
− λ∗〈�|(P̂k − 〈P̂k〉)(X̂k − 〈X̂k〉)|�〉} � 0. (17)

By using the complex form λ = λ(R) + iλ(I) and observing that λ commutes with the scalar
terms 〈P̂k〉 and 〈X̂k〉, we can write relation (17) as

Ik(λ
(R), λ(I)) ≡ (�X̂k)

2 + (�P̂k)
2{[λ(R)]2 + [λ(I)]2} − 〈F̂k〉λ(I) + i〈Ĝk〉λ(R) � 0 (18)

where we used the variance definition of a given observable Ô in the state |�〉
σO ≡ (�Ô)2 ≡ 〈�|(Ô − 〈Ô〉)2|�〉 = 〈Ô2〉 − 〈Ô〉2, (19)

the expectation value of the anti-Hermitian canonical commutator

Ĝk ≡ [X̂k − 〈X̂k〉Î , P̂k − 〈P̂k〉Î ] = [X̂k, P̂k] = iαkα
∗
kR(a0)Î = iCkÎ (20)

and the expectation value of the Hermitian anticommutator operator of the generalized
quadrature operators

F̂k ≡ {X̂k − 〈X̂k〉Î , P̂k − 〈P̂k〉Î }. (21)
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By virtue of the positive value of the variances of X̂k and P̂k , the function Ik(xj , yj ) represents
the upper part of the hyperboloid of two sheets function, minimum value of which can be
obtained applying directly the minimization conditions

∂Ik(λ
(R), λ(I))

∂λ(R)
= 2(�P̂k)

2λ(R) + i〈Ĝk〉 = 0 and

∂Ik(λ
(R), λ(I))

∂λ(I)
= 2(�P̂k)

2λ(I) − 〈F̂k〉 = 0. (22)

Solving this system of equations we get the minimum point coordinates

λ(R) → λ
(R)
k = − i〈Ĝk〉

2(�P̂k)2
and λ(I) → λ

(I)
k = 〈F̂k〉

2(�P̂k)2
, (23)

and using them in (18) we obtain the Robertson–Schrödinger uncertainty relation [17]

(�X̂k)
2(�P̂k)

2 � 1
4 {〈F̂k〉2 − 〈Ĝk〉2}. (24)

The expectation value of the operator F̂k can be explicitly written as

〈F̂k〉 = 〈X̂kP̂k〉 + 〈P̂kX̂k〉 − 2〈X̂k〉〈P̂k〉 = 2σ
(k)
XP (25)

where σ
(k)
XP is the covariance of the generalized quadrature operators X̂k and P̂k in the state

|�〉. The covariance gives the measure of the correlation between two observables. Using
(20) and (25) in (24), we obtain the Robertson–Schrödinger uncertainty relation applied for
shape-invariant systems in terms of the variance and covariance of the quadrature operators

σ
(k)
X σ

(k)
P − σ

(k)
XP � 1

4 {αkα
∗
kR(a0)}2, (26)

which can also be written in the form

σ
(k)
X σ

(k)
P �

{
αkα

∗
kR(a0)

4
(
1 − r

(k)
XP

)
}2

where r
(k)
XP = σ

(k)
XP√

σ
(k)
X σ

(k)
P

(27)

gives the correlation coefficient between the generalized quadrature operators X̂k and P̂k .
When the operators X̂k and P̂k are uncorrelated we have 〈F̂k〉 = σ

(k)
XP = 0 and so we regain

the standard Heisenberg uncertainty principle applied for shape-invariant systems. On the other
hand, for two noncommuting Hermitian operators Ŷ and Ô such as 〈D̂〉 ≡ 〈[Ŷ , Ô]〉 = 0,
unlike those of the Robertson–Schrödinger uncertainty relation, the Heisenberg uncertainty
relation applied to these operators is redundant since it does not determine a nontrivial lower
bound on the product of the operators uncertainties. In this sense, we can say that the
Heisenberg uncertainty relation is a particular case of the general Robertson–Schrödinger
uncertainty relation (24).

2.4. Generalized Robertson intelligent states

2.4.1. Definition. When the equality in (18) is realized and the Robertson–Schrödinger
uncertainty relation (24) assumes its minimum value, the state |�〉 → |λk,wk〉i introduced
in (16) that minimizes the relation is called Robertson intelligent state. For shape-invariant
systems, with the minimum point coordinates (23) and the definition (16) we can show that
these states must be solution of the eigenvalue equation |�〉min = 0 which reads

X̂k|λk,wk〉i + iP̂k|λk,wk〉iλk = wk|λk,wk〉i with λk = 1

2σ
(k)
P

{
αkα

∗
kR(a0) + 2iσ (k)

XP

}
,

wk = 〈X̂k〉 + iλk〈P̂k〉 (28)
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and the expectation values are now obtained with 〈Ô〉 = i〈λk,wk|Ô|λk,wk〉i. For quadrature
operators 〈Ĝk〉 	= 0, and thus λ

(R)
k 	= 0 also. Therefore, once we know wk = w

(R)
k + iw(I)

k and
λk , the relations in (28) may be inverted to give

〈X̂k〉 = w
(R)
k +

(
λ

(I)
k

λ
(R)
k

)
w

(I)
k and 〈P̂k〉 = w

(I)
k

λ
(R)
k

. (29)

Note that with the definitions (28), the properties (5) and assuming that λk+1 = T λkT
† 	= −1,

the eigenvalue equation for the intelligent states can also be rewritten in terms of the ladder
operators B̂± as

B̂−|λk,wk〉i =
{[

αk(λk+1 − 1)

α∗
k−1(λk+1 + 1)

]
B̂+ +

√
2wk

α∗
k−1(λk+1 + 1)

}
|λk,wk〉i. (30)

2.4.2. Construction. The operator B̂− does not have a left inverse in the Hilbert space E of
the eigenstates {|�n〉, n = 0, 1, 2, . . .} of the Hamiltonian Ĥ−. However, a right inverse for
B̂− {B̂−B̂−1

− = Î } can be defined. This fact makes possible to introduce the state

|b, c〉 =
∞∑

n=0

K̂n|�0〉 with K̂ = B̂−1
− (bB̂+ + c) (31)

where the complex factors b ≡ b(a1, a2, a3, . . .) and c ≡ c(a1, a2, a3, . . .) can depend on the
potential parameters. From the definition (31) it follows that

B̂−|b, c〉 = B̂−{|�0〉 + B̂−1
− (bB̂+ + c)|�0〉 + [B̂−1

− (bB̂+ + c)]2|�0〉 + · · ·}
= B̂−|�0〉 + B̂−B̂−1

− (bB̂+ + c)|�0〉 + B̂−[B̂−1
− (bB̂+ + c)]2|�0〉 + · · ·

= 0 + (bB̂+ + c)|�0〉 + (bB̂+ + c)[B̂−1
− (bB̂+ + c)]|�0〉

+ (bB̂+ + c)[B̂−1
− (bB̂+ + c)]2|�0〉 · · ·

= (bB̂+ + c){|�0〉 + B̂−1
− (bB̂+ + c)|�0〉 + [B̂−1

− (bB̂+ + c)]2|�0〉 + · · ·}

= (bB̂+ + c)

∞∑
n=0

{B̂−1
− (bB̂+ + c)}n|�0〉

that is

B̂−|b, c〉 = (bB̂+ + c)|b, c〉. (32)

Comparing the eigenvalues equation (30) which defines the Robertson intelligent states with
equation (32) above we conclude that if we identify the arbitrary complex factors as

b → bk ≡ αk(λk+1 − 1)

α∗
k−1(λk+1 + 1)

and c → ck ≡
√

2wk

α∗
k−1(λk+1 + 1)

(33)

then the state

|αk, λk, wk〉i =
∞∑

n=0

K̂n
k |�0〉 with K̂k = B̂−1

− (bkB̂+ + ck) (34)

is a generalized Robertson intelligent state for shape-invariant potential systems.
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2.4.3. Generalized Glauber form. In the same way, the operator Ĥ− does not have an inverse
in the Hilbert space E , but the operator Ĥ−1

− B̂+ = B̂−1
− does. Therefore, if we define the

Hermitian conjugate operators Q̂ = B̂−Ĥ−1/2
− and Q̂† = Ĥ−1/2

− B̂+ [11] we can easily show
that B̂−1

− = Ĥ−1/2
− Q̂† and the normalized form of the nth excited eigenstate of Ĥ− can be

obtained by |�n〉 = (Q̂†)n|�0〉. With this relation and the eigenvalue equations (8) we can
show that the action of the operator B̂−1

− on the state |�n〉 of the Hilbert space E is given by

B̂−1
− |�n〉 = Ĥ−1/2

− Q̂†(Q̂†)n|�0〉 = Ĥ−1/2
− |�n+1〉 = 1√

en+1
|�n+1〉. (35)

Therefore using (35), the action of the B̂+ operator on these states (10), the translation properties
(5) and the definition (34) we find that

K̂k|�n〉 = bk+1

√
en+2 − e1

en+2 − e0
|�n+2〉 +

ck+1√
en+1

|�n+1〉. (36)

Using this relation and the translation properties (5) in the expansion (34), after a long
calculation, it is possible to show that we can write

|αk, λk, wk〉i =
∞∑

n=0

Ckn|�n〉 (37)

where Ck0 = 1 and the expansion coefficients for n > 0 can be obtained recursively by

Ckn = C
(0)
kn


1 +

[n/2]∑
j=1

C
(j)

kn


 . (38)

In this expression the symbol [n/2] stands for the integer part of n/2 and the auxiliary
coefficients are given by

C
(0)
kn =

n−1∏
s=0

(
ck+s+1√
en − es

)
(39)

C
(1)
kn =

n−1∑
s=1

d(k)
ns , with d(k)

ns = bk+s+1(en − es)

ck+s+1ck+s+2
(40)

C
(2)
kn =

n−3∑
r=1

r∑
s=1

d(k)
ns d

(k)
n,n+s−r−1 (41)

C
(3)
kn =

n−5∑
r=1

r∑
s=1

d(k)
ns d

(k)
n,n+s−r−1d

(k)
n,n+s−r−3 (42)

C
(4)
kn =

n−7∑
r=1

r∑
s=1

d(k)
ns d

(k)
n,n+s−r−1d

(k)
n,n+s−r−3d

(k)

n,n+s−r−5 (43)

...
...

...

C
(j)

kn =
n−2j+1∑

r=1

r∑
s=1

d(k)
ns d

(k)
n,n+s−r−1d

(k)
n,n+s−r−3 · · · d(k)

n,n+s−r−2j+3︸ ︷︷ ︸
product of j coefficients d

(k)
nm

(44)

where bk+j = {T }j bk{T †}j and ck+j = {T }j ck{T †}j . The expansion (37) of the intelligent
state |αk, λk, wk〉i in the basis of the eigenstates {|�n〉, n = 0, 1, 2, . . .} of the Hamiltonian
Ĥ− gives its generalized Glauber’s form [4].
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3. Generalized coherent and squeezed states for shape-invariant systems

3.1. Squeezing effects of the generalized Robertson intelligent states

From the minimum point coordinates (23) and the Robertson–Schrödinger uncertainty relation
(26) we can show that the quadrature operators’ variances and covariance factors in the
intelligent state (34) are related by

σ
(k)
P = 1

2λ
(R)
k

{αkα
∗
kR(a0)} = �

(R)
k

|λk| , σ
(k)
X = |λk|2 σ

(k)
P = |λk| �(R)

k and

σ
(k)
XP = λ

(I)
k σ

(k)
P (45)

where �
(R)
k = 1

2

√
{αkα

∗
kR(a0)}2 + 4

{
σ

(k)
XP

}2
. As we have already mentioned, for quadrature

operators λ
(R)
k 	= 0. Note that the relations in (45) make clear that the intelligent state which

satisfies the eigenvalue equation (30) presents squeezed effects when |λk| 	= 1. Squeezed
states, characterized when the variance in one of the quadrature operators is amplified while
the variance in the other quadrature operator is deamplified, have attracted due attention in
last decades. Taking into account that the uncertainty principle limits the precise knowledge
of all physical quantities in a quantum system, we note that squeezed states are the tools used
in a quantum engineering approach to beat the uncertainty principle in the problems of coding
and transmitting informations by optical means. Because of this property the squeezed states
have found potential applications in optics communication, detection of weak signals, atomic
and molecular physics and quantum physics in general [26–30].

In our case, as a consequence of relations (45), we conclude that

• if |λk| < 1 then σ
(k)
X < �

(R)
k < σ

(k)
P and thus |αk, λk, wk〉i will be a X-squeezed state;

• if |λk| > 1 then σ
(k)
X > �

(R)
k > σ

(k)
P and thus |αk, λk, wk〉i will be a P-squeezed state.

On the other hand, after a little moment’s thought one comes to the conclusion that writing
the expression for the generalized intelligent state (34) as

|αk, λk, wk〉i = Ĝk|�0〉, where Ĝk ≡
∞∑

n=0

K̂n
k =

∞∑
n=0

{B̂−1
− (bkB̂+ + ck)}n, (46)

it is possible to identify the operator Ĝk as the shape-invariant generalization of the product of
the displacement D̂ with the squeezing Ŝ unitary operators, defined in optics for the harmonic
oscillator case. We shall make it clear in the next sections that the expansion terms involving
the (B̂−1

− )n operator are related with the generalization of the unitary displacement operator
D̂ while those depending on the operators product (B̂−1

− B̂+)
n are basically related with the

generalization of the unitary squeezing operator Ŝ. In this sense, when we make the factors
bk = 0 and ck 	= 0 we have generalized purely coherent states while for bk 	= 0 and ck = 0
we construct generalized purely squeezed states for shape-invariant systems.

3.2. Generalized purely coherent states

Rewriting the eigenvalue equation (30) which defines the Robertson intelligent states as{
B̂− −

[
αk(λk+1 − 1)

α∗
k−1(λk+1 + 1)

]
B̂+

}
|αk, λk, wk〉i =

{ √
2wk

α∗
k−1(λk+1 + 1)

}
|αk, λk, wk〉i (47)

we verify that when λk+1 = λ
(R)
k+1 = 1 = λ

(R)
k = λk this equation reduces to the form

B̂−|z; ak〉c = zZk−1|z; ak〉c, z,Zk−1 ∈ lC (48)
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since we identify |αk, 1, wk〉i → |z; ak〉c and ck = wk/(
√

2α∗
k−1) → zZk−1 where

Zk−1 = T †ZkT with Zk ≡ Z(a1, a2, a3, . . .). If we take the value of λk to be unity in
the expression (33), together with the property (5), in the expansion (34) we obtain

|z; ak〉c =
∞∑

n=0

{ck+1B̂
−1
− }n|�0〉 =

∞∑
n=0

{zZkB̂
−1
− }n|�0〉 (49)

with

ck+1 = T

{
wk√
2α∗

k−1

}
T † = wk+1√

2α∗
k

≡ zZk. (50)

Expression (49) gives the generalized coherent state introduced in [23]. As shown in this
reference, the generalized coherent state |z; ak〉c satisfies the essential requirements necessary
to provide the basic principles embodied in Schrödinger’s original idea. Note that with λk = 1
the bk-factors introduced in (33) are null which makes null also the expansion coefficient
factors d(k)

ns defined in (40). Because of this fact all the C
(j)

kn -Glauber expansion coefficients
components in (38) with j > 0 disappear which makes Ckn = C

(0)
kn . In these conditions, with

the use of relations (9), (50) and (39), it is easy to show that (37) becomes

|z; ak〉c =
∞∑

n=0

{
zn

hn(ak)

}
|�n〉, (51)

with h0(ak) = 1 and

hn(ak) =
n−1∏
s=0

√
en − es

Zk+s

=
n∏

s=1



√√√√ n∑

j=s

R(aj )

/
Zk+s−1


 , for n � 1 (52)

where Zk+s = {T }sZk{T †}s . As shown in [23], equations (51) and (52) give the Glauber
form of the generalized coherent states for shape-invariant systems. Applications for some
shape-invariant systems with the potential parameters an related for a translation and a scaling
are presented in that reference.

In the special case of the harmonic oscillator, the simplest among the shape-invariant
potential systems, the parameters are related by a1 = a2 = · · · = an which imply that we have
Zk = cte. = 1. On the other hand, in such a case |�n〉 → |n〉 is an element of the Fock space
F ≡ {|n〉, n = 0, 1, 2, . . .} and, by definition presented, B̂−1

− → â−1 ≡ (â†â)−1â†. Therefore,
using these results in (35) we find that â−1|n〉 = 1√

n+1
|n + 1〉 and thus (49) assumes the form

|z〉c =
∞∑

n=0

{zâ−1}n|0〉 =
∞∑

n=0

zn

√
n!

|n〉 = exp{zâ†}|0〉. (53)

Looking at the middle terms in equation (53) we recognize the usual expression of the
nonnormalized coherent state for harmonic oscillator potential systems [31]. On the other hand,
comparing the result (53) with the displacement operator definition D̂(z) ≡ exp{zâ† − z∗â}
and remembering that the term z∗â in the exponential argument of this expression, which
assures the unitary character of the operator, is related with the normalization condition of
the state |z〉c, then we conclude that the expansion terms in (34) involving the operator B̂−1

−
alone are related with the generalization of the displacement operator D̂(z) for shape-invariant
systems.

We are now in a position to successively examine the behaviour of the variances σ
(k)
X and

σ
(k)
P of the quadrature operators computed on the generalized purely coherent state |z; ak〉c.
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Using the coherent state eigenvalue equation (48) and the quadrature operators definition we
can show, after some calculation, that

σ
(k)
X = {c〈z; ak|X̂2

k |z; ak〉c − c〈z; ak|X̂k|z; ak〉2
c

}/
c〈z; ak|z; ak〉c

= {1 − 2δ
(c)
k (z)

}
�

(H)
k (54)

and

σ
(k)
P = {c〈z; ak|P̂ 2

k |z; ak〉c − c〈z; ak|P̂k|z; ak〉2
c

}/
c〈z; ak|z; ak〉c

= {1 + 2δ
(c)
k (z)

}
�

(H)
k , (55)

where

δ
(c)
k (z) = Re

{
z2Zk−1

αkR(a0)
[α∗

kZk−1 − α∗
k+1Zk−2]

}
(56)

and �
(H)
k = 1

2αkα
∗
kR(a0) is the uncorrelated reference value related with the Heisenberg

uncertainty relation. Since in general the factor δ
(c)
k (z) 	= 0, the immediate conclusion of these

results is that our generalized approach introduces, at first, squeezing effects on the purely
coherent states when compared with the uncorrelated Heisenberg result �

(H)
k .

3.3. Generalized purely squeezed states

Another particular and interesting case of the Robertson intelligent states happens when we
assume wk = 0 in (47) which thus reduces to the form

{B̂− − zZk−1B̂+}|z, ak〉s = 0, z,Zk−1 ∈ lC (57)

since we identify |αk, λk, 0〉i → |z; ak〉s and bk = αk(λk+1 − 1)/[α∗
k−1(λk+1 + 1)] → zZk−1

where Zk−1 = T †ZkT . Keeping in mind the ladder character of the operators B̂± we can
recognize (57) as the shape-invariant generalization of the eigenvalue equation which defines
purely squeezed states for harmonic oscillator systems [32, 33]. Taking the null value of wk

in expressions (33) and using it, together with property (5), in expansion (34), we obtain

|z; ak〉s =
∞∑

n=0

{bk+1B̂
−1
− B̂+}n|�0〉 =

∞∑
n=0

{zZkB̂
−1
− B̂+}n|�0〉 (58)

with

bk+1 = T

{
αk(λk+1 − 1)

α∗
k−1(λk+1 + 1)

}
T † ≡ zZk. (59)

Note that with wk = 0 the ck factors introduced in (33) are null also. Using this fact in (36)
and taking into account relation (59) and the translation properties (5) in expansion (34) it is
possible to get, after some calculations, the Glauber form of the purely squeezed state

|z; ak〉s =
∞∑

n=0

{
zn

h2n(ak)

}
|�2n〉, (60)

where h0(ak) = 1 and

h2n(ak) =
n−1∏
s=0

{√[
e2n − e2s

e2n − e2s+1

]/
Zk+2s

}

=
n∏

s=1



√√√√√

 2n∑

j=2s+1

R(aj )

/ 2n∑
j=2s

R(aj )


/Zk+2s−2


 , n � 1 (61)

with Zk+2s = {T }2sZk{T †}2s .
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In the special case of the harmonic oscillator a1 = a2 = · · · = an which implies to have
Zk = cte. = 1. By definition presented, we have B̂−1

− B̂+ → â−1â† ≡ (â†â)−1â†2 and, with

relations (10) and (35), we find that its action on the Fock states reads â−1â†|n〉 =
√

n+1
n+2 |n+2〉.

Therefore using this result in (58) one has

|z〉s =
∞∑

n=0

{zâ−1â†}n|0〉 =
∞∑

n=0

√
(2n − 1)!!

(2n)!!
zn|2n〉 = exp

{
1

2
zâ†2
}
|0〉. (62)

We recognize in the middle terms of (62) the usual expression of the nonnormalized squeezed
state for harmonic oscillator potential systems [32]. Comparing (62) with the squeezing
operator definition Ŝ(z) ≡ exp

{
1
2 (zâ†2 − z∗â2)

}
and taking into account that the term 1

2z∗â2

in the exponential argument of this expression, which assures the unitary character of Ŝ(z), is
related with the normalization condition of the state |z〉s, then we conclude that the expansion
terms involving the operators product B̂−1

− B̂+ alone in (34) are related with the generalization
of the squeezing operator Ŝ(z) for shape-invariant systems.

The squeezing property of the state |z; ak〉s can be evaluated calculating the variances of the
quadrature operators σ

(k)
X and σ

(k)
P in this state. To proceed first, we note that by relations (10)

and definitions (12) we find that 〈X̂k〉 = s〈z; ak|X̂k|z; ak〉s = 0 = s〈z; ak|P̂k|z; ak〉s = 〈P̂k〉,
which is an expected result if we look at definition (28) and recall that wk = 0. In these
circumstances, it is possible to show, after some calculations, that

σ
(k)
X (z) = s〈z; ak|X̂2

k |z; ak〉s/s〈z; ak|z; ak〉s

= {1 + 2�k(z) + [1 + �k(z)]δ
(s)
k (z)

}
�

(H)
k (63)

and

σ
(k)
P (z) = s〈z; ak|P̂ 2

k |z; ak〉s/s〈z; ak|z; ak〉s

= {1 + 2�k(z) − [1 + �k(z)]δ
(s)
k (z)

}
�

(H)
k (64)

where the related factors are defined as

δ
(s)
k (z) = 2 Re{α∗

k−1zZk−2/αk} (65)

with

�k(z) =
∞∑

n=0

{
e2n

R(a0)

}
pn(z, ak)

/ ∞∑
n=0

pn(z, ak) and pn(z, ak) =
∣∣∣∣ zn

h2n(ak)

∣∣∣∣2 . (66)

To conclude this section we can anticipate some general conclusions about the behaviour
of the variances σ

(k)
X (z) and σ

(k)
P (z) which remain valid for any shape-invariant system just

looking at the expressions obtained above. When |z| � 1 the presence of the energy factor
e2n losses importance in the sums of pn(z, ak) and �k(z) and thus we must have the factor
�k(z) going to a constant value independent of z. In these conditions the variances σ

(k)
X (z)

and σ
(k)
P (z) are governed by a linear dependence on the factor δ

(s)
k (z). On the other hand, the

positive defined values of the variances σ
(k)
X (z) and σ

(k)
P (z) impose restrictions on the range of

allowed values of Re z.

4. Application to a potential with parameters related by a translation

Using the definition presented in the previous sections we illustrate in this and in the next
sections the concept of generalized intelligent, coherent and squeezed states for two shape-
invariant systems. Note that with the particularization of our generalized formalism for
the harmonic oscillator potential case, the simplest shape-invariant potential, we are able
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to reproduce usual results obtained in the literature for purely coherent states [31], as well
as for intelligent and purely squeezed states [32]. Therefore, as a first application of our
generalized formalism we study the case of the Pöschl–Teller potential. Originally introduced
in a molecular physics context [34], the Pöschl–Teller potential is closely related to several
other potentials, widely used in molecular and solid state physics and, in addition, becomes the
infinite square well in a limiting case. The partner potentials V (±)(x) in (3) for this system are
obtained with the superpotential W(x, a1) = √

h̄�{(a1 + γ ) tan ρx − (a1 − γ ) cot ρx} where
a1, ρ and γ are real constants [18]. The remainders [18] in the shape-invariant condition
are given by R(an) = 4η[2an + η], with the potential parameters related by an+1 = an + η,
where η = ρ

√
h̄/(2M�). Inserting these results into (9) we get

en = 4η2n(n + ν) with ν = 2a1/η. (67)

4.1. Results for generalizing factors independent of the potential parameters an

4.1.1. Purely coherent state. Using (67) we can prove that
n−1∏
s=0

(en − es) =
n∏

k=1

[
n∑

s=k

R(as)

]
= (2η)2n

[
�(n + 1)�(2n + ν)

�(n + ν)

]
. (68)

Therefore, if we assume Zk = 2η and use it together with result (68) in (52) we find for the
expansion coefficient

hn(ak) =
√

�(n + 1)�(2n + ν)

�(n + ν)
. (69)

Note at this point that if we choose ν = 1 we get the simple expression

|z; ak〉c =
∞∑

n=0

zn

√
(2n)!

|�n〉 (70)

found in [8] for the coherent state (51). Keeping the simplifying idea of this first example, we
assume αk = ak+1 − ak = η that with the constant value of Zk in (56) imply in δ

(c)
k (z) = 0.

Thus, by equations (54) and (55) we find σ
(k)
X = σ

(k)
P = �

(H)
k = 2η4, showing that, in this

case, the purely coherent state does not present squeezing effects.

4.1.2. Purely squeezed state. In this case if we use the energy eigenvalue (67) we can prove
that

n−1∏
s=0

√[
e2n − e2s

e2n − e2s+1

]
=
√

�
(
2n + ν

2

)
�
(
n + ν

2 + 1
2

)
�(n + 1)�

(
1
2

)
�
(
2n + ν

2 + 1
2

)
�
(
n + ν

2

)
�
(
n + 1

2

) . (71)

With the simple choice Zk = 2η and (71) in (61) and (60) we find the purely squeezed state
expression

|z; ak〉s =
∞∑

n=0

√
(4n + 1)!!

(2n + 1)!
(ηz)n|�2n〉 (72)

since we assume that ν = 2. In these conditions, if we let z = Re z + i Im z = reiφ , we can
evaluate the variances of the quadrature operators σ

(k)
X (z) and σ

(k)
P (z) using (63) and (64),

respectively, with the factors (65) and (66), in this case, given by

pn(r, ak) = (4n + 1)!!

(2n + 1)!
(ηr)2n,

e2n

R(a0)
= 4n(n + 1), δ

(s)
k (z) = 4η Re z (73)
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where, for the sake of simplicity, we maintained the value αk = ak+1 − ak = η, used in
the coherent state case. In figure 1(a), we show a three-dimensional plot of the variance
σ

(k)
X (z)-surface, measured in units of �

(H)
k = 2η4, as a function of Re z and Im z when

η = 0.2. We observe that σ
(k)
X (z) presents a depression region, like a valley, centred around

Re z = −0.5 and Im z = 0 with radius r ≈ 4, where its value increases nonlinearly from the
axis Re z = −2.5. Beyond the nonlinear squeezing valley the factor �k(z) in (66) assumes
the constant value �k(z) ≈ 100, making the behaviour of σ

(k)
X (z) to be basically governed by

the plane function σ
(k)
X (z) ≈ 200 + 75Re z, which we call squeezing plane. To make clearer

these observations, we show in figure 1(b) the contour plot of the variance σ
(k)
X (z)-surface

on the (Re z, Im z) plane in units of �
(H)
k . The contour ranges from 0 to 320�

(H)
k with the

interval of 5�
(H)
k . Note that, in this case, it is not necessary to investigate the behaviour of the

variance in P̂k since σ
(k)
P (r, Re z) = σ

(k)
X (r,−Re z). Because of this fact and the behaviour

of σ
(k)
X (z) presented in figures we can say that the particular influence of the system on the

variances of the quadrature operators is concentrated in the squeezing valley region. The
linear behaviour of the variances beyond this region is basically determined by the squeezed
state characteristics. It is interesting to mention that another possible choices of the system
parameters ν and η do not change qualitatively the results obtained. Only the extension of the
valley and the slope of its lateral surface are sensible on these changes. As a final observation
we highlight the symmetry of σ

(k)
X (z) with Im z value and the range −2.4 < Re z < +2.4

should be imposed on Re z values by the variances positive values.
To investigate the squeezing nature of the state (72) we can introduce a variance deviation

factor defined as Dk(z) ≡ σ
(k)
X (z) −

√
σ

(k)
X (z)σ

(k)
P (z). Therefore, if Dk(z) > 0 we have a

P-squeezed state and if Dk(z) < 0 the state will be X-squeezed. In figure 1(c) we show the
contour plot of the Dk(z)-surface on the (Re z, Im z) plane in units of �

(H)
k . The contour ranges

from −65�
(H)
k to 280�

(H)
k with the interval of 5�

(H)
k . It is evident from this figure that the

state |z; ak〉s defined in (72) is X-squeezed when Re z < 0 and P-squeezed when Re z > 0.

4.2. Results for generalizing factors dependent on the potential parameters an

4.2.1. Purely coherent state. In order to take a little bit of our generalized study, we take
into account the an-parameters translation relation to introduce a simple linear function

f (ak; c, d) = cak + d yielding
n−1∏
s=0

f (ak+s; c, d) = (cη)n

[
�
(
n + k + ν

2 + d
cη

− 1
)

�
(
k + ν

2 + d
cη

− 1
)
]

(74)

where c and d are constants. Therefore, if we define the generalizing functional with the form

Zk =
√

f (a2; 4,−4η)f (a1; 4, 2η) then
n−1∏
s=0

Zk+s = (2η)n

√
�(2n + ν)

�(ν)
(75)

and using (75) and (68) in (52) and (51) we obtain

|z; ak〉c =
∞∑

n=0

√
�(n + ν)

�(ν)�(n + 1)
zn|�n〉 (76)

that we can identify with the form found in [35] when we change ν → ν + 1. With the choice
(75) for the generalization factor Zk we find the expression

δ
(c)
k (z) = (ν − 2)

{
1 −
√

(ν − 4)(ν − 3)

(ν − 2)(ν − 1)

}
Re z2 (77)
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Figure 1. (a) The three-dimensional plot of the variance σ
(k)
X (z)-surface, measured in units of

�
(H)
k = 2η4, as a function of Re z and Im z when η = 0.2. (b) The contour plot of σ

(k)
X (z)-surface

on the (Re z, Im z) plane in units of �
(H)
k . The contour ranges from 0 to 320�

(H)
k with the interval

of 5�
(H)
k . (c) The contour plot of the variance deviation Dk(z)-surface on the (Re z, Im z) plane in

units of �
(H)
k . The contour ranges from −65�

(H)
k to 280�

(H)
k with the interval of 5�

(H)
k .
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for the squeezing factor (56) of the coherent state |z; ak〉c since we keep the simplifying value
αk = ak+1 − ak = η for the quadrature operators’ generalizing factor. Note that with ν = 2
we obtain a purely coherent state without squeezing effects since δ

(c)
k = 0.

4.2.2. Purely squeezed state. In this case, with the help of the an-parameters translation
relation we can show that the auxiliary function defined in (74) satisfies the relation

n∏
s=1

f (ak+2s−2; c, d) = (2cη)n




�
[
n + 1

2

(
k + ν

2 + d
cη

− 1
)]

�
[

1
2

(
k + ν

2 + d
cη

− 1
)]

 . (78)

Therefore, if we use the result (78) and define the generalizing functional with the form

Zk =
√

f (a2; 1/2η, ν/4)

f (a1; 1/2η, ν/4)
we obtain

n∏
s=1

Zk+2s−2 =
√

�
(
n + ν

2 + 1
2

)
�
(

ν
2

)
�
(
n + ν

2

)
�
(

ν
2 + 1

2

) (79)

that together with (71) in (61) gives for the purely squeezed state (60) the expression

|z; ak〉s =
√

�
(

ν
2

)
�
(

ν
2 + 1

2

) ∞∑
n=0

√
(2n − 1)!!�

(
2n + ν

2 + 1
2

)
n!�
(
2n + ν

2

) (
z√
2

)n

|�2n〉. (80)

In this case, the factors (65) and (66) related with the variances of the quadrature operators,
and responsible for the squeezing effects of |z; ak〉s, can be evaluated with the expressions

pn(r, ak) =
{

(2n − 1)!!�
(

ν
2

)
�
(
2n + ν

2 + 1
2

)
r2n

2nn!�
(

ν
2 + 1

2

)
�
(
2n + ν

2

)
}

,
e2n

R(a0)
= 4n(n + 1),

δ
(s)
k (z) =

√
2 Re z (81)

where we kept the value αk = ak+1 − ak = η, used before.
Figure 2 is the version of figure 1 for the squeezed state (80) calculated with ν = 2. Note

in figure 2(a) that, in this case, the nonlinear squeezing region, sensible to the system influence
on the variances of the quadrature operators, shows a bowl-shaped structure centred around
Re z = −0.1 and Im z = 0 with radius r ≈ 1. Outside of the bowl region the factor �k(z) goes
to the constant value �k(z) ≈ 410 and the behaviour of σ

(k)
X (z) is basically governed by the

squeezing plane function σ
(k)
X (z) ≈ 830 + 580 Re z. We detach the stronger restriction on the

Re z values imposed in this case. The behaviour of σ
(k)
X (z) showing its asymmetry in Re z and

symmetry in Im z makes clearer in figure 2(b) that shows the contour plot of σ
(k)
X (z)-surface on

the (Re z, Im z) plane in units of �
(H)
k . The contour ranges from 0 to 1700�

(H)
k with the interval

of 20�
(H)
k . In figure 2(c) we show the contour plot of the variance deviation Dk(z)-surface

on the (Re z, Im z) plane in units of �
(H)
k . The contour ranges from −340�

(H)
k to 1500�

(H)
k

with the interval of 20�
(H)
k . In analogy with the other example, the X-squeezed nature of the

state |z; ak〉s when Re z < 0 and its P-squeezed nature when Re z > 0 is evident from the
figure.

5. Application to a potential with parameters related by a scaling

One class of shape-invariant potentials is given by an infinite chain of reflectionless potentials
V

(±)
k (x), (k = 0, 1, 2, . . .), for which the associated superpotentials Wk(x) satisfy the self-

similar ansatz Wk(x) = qkW(qkx), with 0 < q < 1. These sets of partners potentials V
(±)
k (x),

also called self-similar potentials [36, 37], have an infinite number of bound states and their
parameters related by a scaling: an = qn−1a1.
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Figure 2. Same as figure 1, but for the squeezed state (80) calculated with ν = 2. The contour
plot of σ

(k)
X (z)-surface in (b) ranges from 0 to 1700�

(H)
k with the interval of 20�

(H)
k . In (c) the

contour plot of Dk(z)-surface ranges from −340�
(H)
k to 1500�

(H)
k with the interval of 20�

(H)
k .
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5.1. Results for generalizing factors independent of the potential parameters an

5.1.1. Purely coherent state. Shape invariance of self-similar potentials was studied in detail
in [38, 39]. In the simplest case studied the remainder in the shape invariance condition is
given by R(a1) = ca1, where c is a constant. Using this result in (9) we obtain the energy
factor of the system with the form

en =
(

1 − qn

1 − q

)
R(a1) yielding

n−1∏
s=0

(en − es) =
n∏

k=1

[
n∑

s=k

R(as)

]
=
[
R(a1)

1 − q

]n

qn(n−1)/2(q; q)n (82)

where the q-shifted factorial (q; q)n is defined as (p; q)0 = 1 and (p; q)n = ∏n−1
k=0(1 − pqk)

with n ∈ Z. Therefore, if we assume the simple choice Zk = √√
q/(1 − q), a constant, and

use it with the result of equation (82) in the expansion coefficient (52) we obtain the coherent
state (51) with the form

|z; ak〉c =
∞∑

n=0

q−n2/4

√
(q; q)n

ξn

1
|�n〉 (83)

where ξ1 = z
/√

R(a1). The result (83) was obtained in our previous paper [11] for the
coherent states of the self-similar potentials. Assuming that αk = ak+1/ak = q = constant
and using this fact with the constant Zk-value in (56) we conclude that δ

(c)
k (z) = 0. Thus, by

equations (54) and (55) we find σ
(k)
X = σ

(k)
P = �

(H)
k = 1

2qR(a1), showing that in this case the
purely coherent state does not present squeezing effects.

5.1.2. Purely squeezed state. Using the expression of en for self-similar potentials we can
also prove that

n−1∏
s=0

√[
e2n − e2s

e2n − e2s+1

]
=
√

(q2; q2)n

qn(q; q2)n
. (84)

Therefore, if we assume now the constant value Zk = √
q we find for the expansion coefficient

(61) and the purely squeezed state (60) the expressions

h2n(ak) =
√

(q2; q2)n

q2n(q; q2)n
and |z; ak〉s =

∞∑
n=0

√
(q; q2)n

(q2; q2)n
(qz)n|�2n〉. (85)

In this case, the factors (65) and (66) related with the variances of the quadrature operators
can be evaluated with

pn(r, ak) =
[

(q; q2)n

(q2; q2)n

]
(qr)2n,

e2n

R(a0)
= q(1 − q2n)

1 − q
, δ

(s)
k (z) = 2

√
q Re z (86)

where we kept the value αk = ak+1/ak = q used in the coherent state case.
In figure 3, we show the three-dimensional plot of the variance σ

(k)
X (z)-surface, measured

in units of �
(H)
k , as a function of Re z and Im z when the scaling parameter has the values

q = 0.60 and q = 0.99. For the lower value of q we observe that σ
(k)
X (z) presents a depression

region centred around Im z-axis and with radius r ≈ 1.8 where its value increases nonlinearly
from the axis Re z = −1.0. Beyond this squeezing valley the presence of the energy system
term e2n/R(a0) in expression (66), which defines �k(z), is unrelevant making this factor to
assume the constant value �k(z) ≈ q/(1 − q) = 1.5. Thus, by (63) the behaviour of σ

(k)
X (z) is
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Figure 3. The three-dimensional plot of the variance σ
(k)
X (z)-surface, measured in units of

�
(H)
k = 1

2 qR(a1 ), as a function of Re z and Im z for the scaling parameter values q = 0.60
and 0.99.

basically governed by the squeezing plane function σ
(k)
X (z) ≈ 4(1+Re z). Taking into account

this result and the result for the higher value q = 0.99 we conclude that the scaling parameter
q has a fundamental relevance on the variance behaviour. For q = 0.99 the nonlinear
squeezing region is more restricted in size and well defined in shape, like a bowl cut by the
squeezing plane σ

(k)
X (z) ≈ 170(1 + Re z), defined when r > 1 and the factor �k(z) goes

to the constant value �k(z) ≈ q/(1 − q) = 99. As in the other cases, taking the variance
deviation factor Dk(z) it is possible to conclude that the state |z; ak〉s defined in (85) is X-
squeezed when Re z < 0 and P-squeezed when Re z > 0. On the other hand, the symmetry
relation σ

(k)
P (r, Re z) = σ

(k)
X (r,−Re z) remains valid, which makes it unnecessary to discuss

the behaviour of the variance σ
(k)
P in the other quadrature operator. In this case, the positive

defined value of the variance restricts Re z to the range −1.0 < Re z < +1.0.

5.2. Results for generalizing factors dependent on the potential parameters an

5.2.1. Purely coherent state. As in the potential parameter translation case, just to take a
little bit of our generalized approach for this kind of potential system, let us assume
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Zk = R(a1) yielding
n−1∏
s=0

Zk+s = [R(a1)]
nqn(n−1)/2. (87)

Substituting this result and equation (82) into (52) and (51) we find

hn(ak) =
√

(q; q)n

[R(a1)(1 − q)]nqn(n−1)/2
and |z; ak〉c =

∞∑
n=0

qn2/4

√
(q; q)n

ξn

2
|�n〉 (88)

where ξ2 = z
√

R(a1)(1 − q)/
√

q. This expression was found in our previous paper [12] as
a possible coherent state for self-similar potentials. With choice (87) for the generalization
factor Zk , we find the expression δ

(c)
k (z) = −q−3/2 Re

{
ξ 2

2

}
for the squeezing factor (56) of

the coherent state |z; ak〉c, since we keep the simplifying value αk = ak+1/ak = q for the
quadrature operators generalizing factor. Note that in the limit q → 1 we have δ

(c)
k → 0 and

we obtain again a purely coherent state without squeezing effects.

5.2.2. Purely squeezed state. With the form (87) for the generalizing factor Zk we obtain
n∏

s=1

Zk+2s−2 = [R(a1)]
nqn(n−1) (89)

and using (84) and (89) in (61) and (60) we conclude that

h2n(ak) =
√

(q2; q2)n

qn(q; q2)n

/
[R(a1)]

nqn(n−1) and

|z; ak〉s =
∞∑

n=0

qn2

√
(q; q2)n

(q2; q2)n
ζ n

2
|�2n〉 (90)

where ζ2 = R(a1)z
/√

q. In this case, the factors (65) and (66), related with the variances of
the quadrature operators, can be evaluated with

pn(z, ak) =
[

q2n2
(q; q2)n

(q2; q2)n

] ∣∣ζ2

∣∣2n
,

e2n

R(a0)
= q(1 − q2n)

1 − q
,

δ
(s)
k (z) = 2R(a1)q

−2 Re z (91)

and αk = ak+1/ak = q.
Figure 4 is the version of figure 3 for the squeezed state (90), calculated with R(a1) = 1

and for the scaling parameter values q = 0.800, 0.990 and 0.999. Note that, in this case,
the nonlinear squeezing region of the variances shows a more sensibility to higher values of
the scaling parameter. Only for q values very close to unity the three-dimensional plot of the
variance σ

(k)
X (z)-surface as a function of Re z and Im z shows a restricted and well-defined

shape. For lower values of q the restrictions on the Re z values are stronger. On the other
hand, when q → 1 the squeezing plane of σ

(k)
X (z) that cut the bowl-shaped structure, defined

when r > 1.5 and �k(z) → 95, is obtained by equation σ
(k)
X (z) ≈ 190(1 + Re z). As in

other examples, the X-squeezed and P-squeezed nature of the state (90) when Re z < 0 and
Re z > 0, respectively, is still valid. The same we can say about the symmetry relation
σ

(k)
P (r, Re z) = σ

(k)
X (r,−Re z).

To close these applications for self-similar potentials, note that in the limit of

lim
q→1

en = lim
q→1

(
1 − qn

1 − q

)
R(a1) → nR(a1) and lim

q→1
(q; q)n → n!, (92)

implying that the results obtained must reduce to those of the harmonic oscillator potential
case.
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q = 0.800

q = 0.999

σX / ∆k
(H)(k)

q = 0.990

σX / ∆k
(H)(k)

σX / ∆k
(H)(k)

Figure 4. Same as figure 3, but for the squeezed state (90) calculated with R(a1 ) = 1 and with the
scaling parameter values q = 0.800, 0.990 and 0.999.

6. Final remarks

In this paper, using an algebraic approach, we constructed generalized Robertson intelligent
states for shape-invariant systems. This generalization based on the introduction of quadrature
operators and factors which depend on the potential parameters makes it possible to investigate
coherency and squeezing effects in the shape-invariant systems and evaluate the dependence
of these effects in the different choices of the generalizations factors for shape-invariant
systems with potential parameters related by a translation and by a scaling function. We
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showed that the squeezing effects, when analysed in terms of the real and imaginary parts of
the z-parameter, can be separated in two regions with very different behaviours. An internal
region, called squeezing valley, which presents a nonlinear behaviour very sensible to the
system characteristics, and an external region, called squeezing plane, which presents a linear
dependence in Re z, determined basically for the state generalizing factor Zk .

For coherent states in general, and for the squeezed states of harmonic oscillator systems
in particular, we showed that, with an adequate choice of the generalizing factors, it is possible
to reproduce results already known in the literature.
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